

WASC Accreditation Educational Effectiveness Review

Master's of Science in Engineering.

The program is currently offered in the following
Campuses: Mexicali, Tijuana and Ensenada.

Last Program Review: November 2007

Table of Contents

1. Introduction	3
Denomination and description of the academic program	4
3. Educational objectives of the academic program	6
4. Learning outcomes of the program and metrics for assessment	7
5. Curriculum of the academic program and faculty resources	9
6. Curricular mapping	10
7. Assessment plan	14

1. Introduction.

The Mission of the Master's of Science in Engineering Program is to generate high level specialists in select areas of engineering, who design and develop applied research projects for the improvement and innovation of local, regional and national organizations.

The Vision of the Master's of Science in Engineering Program is to be the primary source in the region for high level professionals who are specialists in select areas of engineering and have the knowledge and abilities to improve and innovate organizations.

The CETYS University Master's of Science in Engineering was created in 1992. The programs that were developed in that time were three and focused in the areas of: Industrial Management, Networks & Computing, and Manufacturing Systems.

The first formal review of the programs was done in 1997 and basically consisted in updating the content of the three programs, and also the creation of a new program focused on Optimization of Industrial Systems.

The last review was done in 2004, in which a need for integration of all the programs was identified. The programs were integrated into one core program with common courses and various emphasis areas that the graduate student could choose from according to his or her interest.

Three areas of knowledge were identified in which CETYS University has demonstrated to have the capacity to develop graduate programs, and it was around these three areas of knowledge that the emphasis areas were defined. The three areas of knowledge that were identified are: Industrial Engineering, Mechanical Engineering and Computing & Electronics.

Some significant achievements relating to the Master's of Science in Engineering Program are:

(ANOTAR AQUÍ UN LISTADO DE LOGROS)

2. Denomination and description of the academic program.

The Master's of Science in Engineering Program is focused on three Primary Professional Formation Lines: COMMON, EMPHASIS and APPLIED RESEARCH:

- a) COMMON: Statistics, Project Management, Strategic Vision, Use of Technology.
- b) EMPHASIS: Focused on three areas of knowledge defined by the college of engineering:
 - INDUSTRIAL ENGINEERING: Industrial Management, Materials and Logistics Management, Quality and Productivity.
 - MECHANICAL ENGINEERING: Manufacturing Design and Processes, Aerospace Engineering.
 - COMPUTING & ELECTRONICS: Distributed Computing, Networks & Telecommunications, Control & Automation. Microelectronics & Semiconductors.
- c) APPLIED RESEARCH: Applied Research Project.

The Master's of Science in Engineering Program is focused on the application of science, more than on research and advancement of science, and it is for this reason that, to obtain their degree, graduate students must accredit the 14 courses that comprise the program, and also develop an application project related to their area of emphasis, in which they must generate a report of the final results.

The program is offered with a mix of professors that are associates of the institution, professors from other national and international institutions, and professionals with master's degrees that are currently working in local and regional industry.

The program has no full time professors, it rather operates with the full time faculty of the college of engineering, that for the graduate college are considered associates, and it is this group of professors that support the development and evolution of the program.

The program has a statewide coordinator that is in charge of the quality of the program via the selection of the professors and close communication with them for course follow up. The program coordinator also has close communication with students via personal interviews and e-mail. The program coordinator is supported by the associate professors of the institution for student academic follow up in each of the campuses.

The program currently has 196 students in its Mexicali campus, 85 in its Tijuana campus and 18 in its Ensenada campus. The program has near to 200 graduates as of the fall 2007 period.

The list of supporting faculty members by emphasis area can be consulted in section 5.

3. Educational Objectives of the academic program.

The Educational Objectives that the Graduate College Academy has established for the Master's of Science in Engineering are the following:

- The alumni of this program will be a project leader for projects involving the areas of knowledge and emphasis that he or she chooses for applications in local, regional and national organizations.
- The alumni from this program will be able to do consulting projects involving the areas of knowledge and emphasis that he or she chooses for local, regional and national organizations.
- The alumni from this program will be able to continue their graduate studies to obtain higher degrees with success.
- The alumni from this program will be able to obtain higher level job positions in their current organization or in a new one within 6 months of the obtainment of the degree.

These Educational Objectives will be the primary focus for alumni studies and follow up, which will be used for various purposes during the assessment cycle, as well as program review.

4. Learning outcomes of the program and metrics for assessment.

There are 2 Learning Outcomes for all Master's Programs that have been established by the Graduate College Academy, that describe knowledge, abilities and attitudes that every graduate student must achieve by the end of the academic program. These are:

The student of a CETYS University Master's Program will...

- MPLO1: ... develop applied research projects using the correct quantitative and qualitative methodologies, as well as information technologies, primarily data bases and information systems, for the solution of problems related to his or her area of specialization.
- MPLO2: ... develop personal and professional competencies with a focus on specialization, for direct application in his or her work.

There is 1 Learning Outcome for the Master's of Science in Engineering Program that has been established by the College of Engineering and Graduate College Academy, that describes knowledge, abilities and attitudes that every graduate student from a Master's of Science in Engineering Program must achieve by the end of the academic program. The Learning Outcome is:

The student of a CETYS University Master's of Science in Engineering Program will...

 MCIPLO: ... solve problems related to the improvement and innovation of products and processes in organizations, applying knowledge and abilities in the areas of Statistics, Project Management, Strategic Vision and Information Technologies.

The Learning Outcomes that the College of Engineering and the Graduate College Academy have established for each of the Master's of Science in Engineering Emphasis Areas describe knowledge, abilities and attitudes that every graduate student from a Master's of Science in Engineering Program with a specific Emphasis Area must achieve by the end of the academic program. These are:

INDUSTRIAL ENGINEERING.

The student of a CETYS University Master's of Science in Engineering Program with an Emphasis in Industrial Management will...

• EAILO1: ... analyze and solve problems in the context of industrial plant management, with an executive vision focused on decision making using modern manufacturing systems methodologies, and integrating tools relating to operations management, human resources, marketing and finance.

The student of a CETYS University Master's of Science in Engineering Program with an Emphasis in Materials and Logistics Management will...

EAMLLO1: ... analyze and solve problems in the context of supply chain management, with a focus on
production systems with an operative and processes vision using methods and tools of inventory
management, planning and forecasting, master planning, floor production control and lean
manufacturing.

The student of a CETYS University Master's of Science in Engineering Program with an Emphasis in Quality and Productivity will...

• ECPLO1: ... analyze and solve problems in the context of work systems' improvement, that are immersed in production processes using quality management and productivity tools applying a quantitative and optimization approach

MECHANICAL ENGINEERING:

The student of a CETYS University Master's of Science in Engineering Program with an Emphasis in Manufacturing Design and Processes will...

 EDPMLO1: ... analyze and solve manufacturing design and processes problems with a focus on materials analysis, and product engineering using mathematical computer modeling for design, and modern manufacturing techniques.

The student of a CETYS University Master's of Science in Engineering Program with an Emphasis in Aerospace Engineering will...

• EIALO1: ... analyze and solve problems in the context of aerospace and aeronautics engineering in two areas: (1) materials & structures, and (2) energy and propulsion, using mathematical models, shuttle conceptual design, materials for design and manufacturing and turbine theory.

COMPUTING & ELECTRONICS:

The student of a CETYS University Master's of Science in Engineering Program with an Emphasis in Distributed Computing will...

ESCDLO1: ... analyze and solve problems in the context of distributed computing with a
focus on software development, using software architecture, advanced object
programming, networks & operating systems, distributed system design and mobile
computing.

The student of a CETYS University Master's of Science in Engineering Program with an Emphasis in Networks & Telecommunications will...

• ERTLO1: ... analyze and solve problems in the context of networks & telecommunications with a focus on computer based communication systems, using specialized connectivity equipment, internet protocols, high performance network standards and equipment, cryptography techniques and data coding.

The student of a CETYS University Master's of Science in Engineering Program with an Emphasis in Control & Automation will...

 EACLO1: ... analyze and solve problems in the context of industrial automation systems, using automatic control theory, programmable controllers technology, intelligent control systems and robotics.

The student of a CETYS University Master's of Science in Engineering Program with an Emphasis in Microelectronics & Semiconductors will...

 EMSLO1: ... analyze and solve problems in the context of microelectronics and semiconductors, with a focus on integrated circuit processing, using solid state physics theory, integrated circuit fabrication techniques, materials properties and integrated circuit design.

The above student learning outcomes are a work in progress and are a part of the assessment cycle and program review, however we are just beginning to understand and develop tools to measure them.

#	Student Learning	Metrics to evaluate student performance	Evidence	of	achieved
	Outcomes		learning		
1	MPLO1	Currently the system that is in place to evaluate	Student Work		•
2	MPLO2	student performance is a scale of 0 to 10, where	from selected		•
3	MCIPLO	a grade above 8 is considered as "passing" and	the Applied R	esearch	n Project
4	EAILO1 EAMLLO1 ECPLO1 EDPMLO1 EIALO1 ESCDLO1 ERTLO1 EACLO1 EMSLO1	below as "failing". Rubrics for the Master's Programs are being developed to evaluate these learning outcomes. The rubrics are being developed by the Graduate College Academy			

The Graduate College Academy has the following members:

#	Name	Degree	Area of knowledge	Campus
1	Isaac Azuz	Doctor	Life Sciences	Ensenada
2	Alberto Gárate	Doctor	Education	Mexicali
3	Héctor Maymi	Doctor	Social Sciences	Mexicali
4	Rosa María Lamadrid	Master	Education	Mexicali
5	Miguel Salinas	Master	Computer Sciences	Mexicali
6	Mario Dipp	Master	Economics and	Mexicali
			Finances	
7	José Gpe. Hernandez	Doctor	sicologia	Tijuana
8	Teresa Mercado	Master	Administration	Tijuana
9	Moises Sánchez	Doctor	Electrónica	Tijuana

The Graduate College Academy was created with the purpose of maintaining homogeneity between the different master's programs and their operation. The Academy defines, supervises and reviews admission criteria, academic conflicts, degree obtainment, etc. Each program in particular has a group of professors affiliated to the institution that supervise the development and evolution of the academic program.

The list of supporting faculty members by emphasis area can be consulted in section 5.

5. Curriculum and faculty resources.

The Master's of Science in Engineering program operates under the following structure. Students must complete 84 credits, equivalent to 14 courses. Students must comply with the adequate number of courses in each of the segments (Core, Emphasis, Electives, Applied Research). There is no specific time schedule under which they must complete their credits. Students have flexibility regarding which courses to take from each segment, and also when to take them. Academic coordinators provide guidance regarding what courses a student should take, considering their specific needs and objectives.

The Faculty resources are presented by emphasis area in the following table:

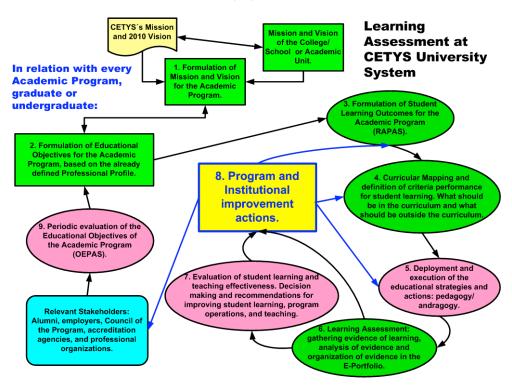
Master's of Science in Engineering Program Coordinator: M.S. Miguel Salinas		
First Year (6 courses)	Professors affiliated with the institution	Professors from other institutions and industry
COMMON, emphasis in:	Dr. Isaac Azuz	M.A. Jesús Torres
Statistics	M.A. Alfredo Rodríguez	M.S. Marcos Quiroz
Project Management	M.S. Miguel Salinas	
Strategic Vision	M.A. Fracisco Velez	
Use of Technology	M.S. Salvador Chiu	
Electives	M.S. Enrique Fitch	
Second year (8 courses)	Professors affiliated with the	Professors from other
	institution	institutions and industry
INDUSTRIAL ENGINEERING (7 courses), emphasis in:	M.S. Cesar Barraza	M.S. Jesús Torres Acevedo
Industrial Management	M.S. Carlos González	Dr. Sergio Ruíz
Materials and Logistics Management	M.S. Héctor Vargas	M.A. Marco Macedo
Quality and Productivity	M.I. Jaime Alvarez	M.A. Mariela Quiroga
	M.A. Carmina Contreras	M.S. Marco Jiménez
Academic Coordinator: M.S. Mauro Chávez	M.A. Mónica Acosta	M.E. Eduardo Santiago
	M.A. Mauro Chávez	M.S. Cesar Torres
MECHANICAL ENGINEERING (7 courses), emphasis in:	Professors affiliated with the institution	Professors from other institutions and industry
Diseño y Procesos de Manufactura	M.S. Bernardo Valadez	Dr. Alexandro Castellanos
Ingeniería Aeroespacial	M.S. Alma Abad	Dr. Enrique Rodarte
		M.S. Orman Millan
Academic Coordinator: M.S. Bernardo Valadez		Professors COMEA
		Negotiating alliances with ASU,NAU and ERU.
COMPUTING & ELECTRONICS (7 courses), emphasis	Professors affiliated with the	Professors from other
in:	institution	institutions and industry
Cómputo Distribuido	M.S. Jorge Sosa	Dr. Arnoldo Díaz
Redes y Telecomunicaciones	M.S. Cristobal Capíz	Dr. Alexandro Castellanos
Automatización y Control	M.S. Guillermo Cheang	
Microelectrónica y Semiconductores	M.S. Dania Licea	Alliance con USF
	M.S. Leopoldo Uribe	Dr. Willie Moreno
Academic Coordinator: M.S. Jorge Sosa	Dr. Moises Sánchez	Dr. Andrew Hoff
	Dr. Carlos Fuentes	Dr. Jesús Finol
	M.S. Héctor Barajas	Dr. David Snider
	M.S. Marco Peña	
	M.S. Daniel Moctezuma	
	M.S. Carlos García	
	M.S. Adolfo Esquivel	
APPLIED RESEARCH (1 course)	Professors affiliated with the	Professors from other
Application Project	institution	institutions and industry
	Dr. Isaac Azuz	Dr. Arnoldo Díaz
	Dr. Héctor Maymi	
	Dr. Moisés Sánchez	

6. Curricular mapping.

Legend for levels used for curricular mapping:

SU ("SUFICIENTE") = SUFFICIENT. **ME** ("MEJORABLE") = IMPROVABLE. **SO** ("SOBRASALIENTE") = OUTSTANDING.

Course information and co-curricular efforts		outco	tutional omes		arning	Curricular ma Academic Program Learning Outcomes			IND. MA NA G.	MAT. AND LOG. MAN AG.	LITY . AND	MA NU F. DE S. AN D PR OC.	NETW. AND TELEC.	CON TRO L AND AUT OM.	DIST COM P.	MIC RO. AN D SE MIC	AER OSP ENG
CODE	COURSE	IL 01	IL O2	IL O3	IL O4	MPL O1	MPL O2	MCIPL 01	OAI LO1	EAM LLO 1	ECP LO1	EDPM O1	L ER TL 01	EAC LO1	ESC DLO 1	SLO 1	EIA LO1
COMMON	I.									-			1 7.				
MA502	Statistical Models	M E	M E			ME	ME	ME									
AD509	Project Management	M E	M E			ME	ME	ME									
AD510	Strategy and competitivene	M E	M E			ME	ME	ME									
SI507	ss Decision Support	M E	M E			ME	ME	ME									
4 DDI :==	Systems		<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>	<u></u>	<u> </u>	<u> </u>			<u> </u>		<u> </u>
CS501	Application Project	SO	SO			SO	SO	SO	SO	SO	SO	SO	SO	SO	SO	SO	SO
INDUSTRI	AL MANAGEMENT	EMPH	ASIS								l		<u> </u>		1		
MF501	Manufacturing Strategies	SO	SO				SO		ME								
MF502	Diseño de Sistemas de Manufactura	SO	SO				SO		ME								
11508	Plant Operations Management	SO	SO				ME		ME								
11509	International Logistics Operations	SO	SO				ME		ME								
FZ509	Economic Evaluation of Industrial Projects	SO	SO				ME		ME								
RI516	Seminary of Human Resources	SO	SO				ME		ME								
MK511	Seminary of Marketing	SO	SO				ME		ME								
	LS AND LOGISTICS			NT EM	PHASIS			1									
11502	Supply Chain Management	SO	SO				ME			ME							
11503	Inventory Management	SO	SO				ME			ME							
11504	Forecast Models	SO	SO				ME			ME							
11505	Floor Production Control	SO	SO				SO			ME							
11509	Lean Manufacturing	SO	SO				ME			ME							
11506	Logistics and distribution	SO	SO				SO			ME							
11507	Simulation Systems	SO	SO				ME			ME							


OUALITY	AND DOODLOTE	T\/ =145									
II510	Total Quality	SO	SO	П		ME	I	ME			
11010	Management	00				IVIL		IWIE.			
11511	Quality Norms	SO	SO			SO		ME			
II512	and Systems Quality	SO	SO			ME		ME			
	Engineering										
II513	Statistical Methods for	SO	SO			SO		ME			
	Quality Improvement										
II514	Production Systems	SO	SO			ME		ME	=		
11515	Applications of	SO	SO			ME		ME			
	Optimization Models I										
II516	Applications of	SO	SO			ME		ME			
	Optimization										
MANUFA	Models II CTURING DESIGN	AND PF	ROCESS	SES EMP	PHASIS						
MA503	Mathematical	SO	SO			ME			ME		
	Models for Mechanical										
MF503	Systems Experimental	SO	SO	\vdash		ME	<u> </u>		ME		
	Analysis for										
	Mechanical Parts										
MF504	Energetic Design Tools	SO	SO			ME			ME		
	for CAD-CAE										
MF505	Prototype Products	SO	SO			SO			ME		
	Generation										
MF506	Materials	SO	SO			ME			ME		
MF507	Engineering Fundamentals	SO	SO			ME			ME		
MF508	of Thermofluids Design and	SO	SO			SO			ME		
IVIF5U8	Applications of	50	50			80			ME		
	Thermal										
NFTWOR	Systems KS AND TELECOM	MUNIC	ATIONS	SEMPHA	SIS						
CE500	Telecommunic	SO	SO			ME			N	1E	
	ations Fundamentals										
CE501	Connectivity and Networks	SO	SO			ME			Ŋ	1E	
05500	Design	00	00			14-				45	
CE502	High Perfomance	SO	SO			ME			N	1E	
	Networks										
CE503	Wireless Networks	SO	SO			ME			ı	1E	
CE504	Networks	SO	SO			SO			N	1E	
CE505	Security Information	SO	SO			ME			1	ME .	
CE506	Coding Theory Integration of	SO	SO			SO			<u> </u>	1E	
	Networks										
CONTRO	Services L AND AUTOMATIC	N EMP	HASIS				<u> </u>				
CE507	Fundaments of	SO	SO			ME				ME	
	Control					1					
CE508	Systems Programmable	SO	SO	\vdash		ME				ME	
0_000	Controllers										
CE509	Lab. Instrumentation	SO	SO	\vdash		ME		-		ME	
02003	and Control	30	30			IVIL				IVIL	
05510	Systems	00	00							ME	
CE510	Digital Control Lab.	SO	SO			SO				ME	
CE511	Automation	SO	SO			SO				ME	
	and Control for Manufacturing					1					
CC507	Object	SO	SO	\vdash		ME				ME	
	,						·				

	Programming and Control									
CC508	Intelligent	SO	SO				ME		ME	
	Control									
	Systems									
CC500	Architecture	EMPHA SO	SO		ı	1	ME	1	ME	
CC500	and Software	30	30				IVIE		IVIE IVIE	
	Development									
CC501	Network and Distributed	SO	SO				ME		ME ME	
	Systems									
CC502	Advanced	SO	SO				ME		ME	
	Object Programming									
CC503	Object and	SO	SO				ME		ME	
00504	Data Systems	00	00				00		NE.	
CC504	Distributed Systems	SO	SO				SO		ME	
	Design									
CC505	Heterogeneous Systems	SO	SO				SO		ME	
	Integration									
CC506	Mobile	SO	SO				ME		ME	
MICROFI	Computing LECTRONICS AND	SEMICO	ONDUC	TORS F	MPHA	SIS	<u> </u>	<u> </u>		
CE512	Solid State	SO	SO	. CINO L			ME		ME	
CE513	Physics Semiconductor	SO	SO	-			ME	ļ	ME	
	Processing I	30	30				IVIE		ME	
CE514	Semicinductor	SO	SO				SO		ME	
CE515	Processing II Metrology and	SO	SO				ME		ME	
02010	Characterizatio		00				IVIL		INIC	
	n of									
	Semiconductor s									
CE516	Digital and	SO	SO				SO		ME	
	Analog VLSI Design									
ELECTIV	ES:									
CE517	Structure and	SO	SO				SO		ME	
	Property of									
CE518	Materials Synthesis of	SO	SO				SO		ME	
OLOTO	Rapid									
CE519	Prototyoing Principles of	SO	SO				SO		ME	
CESTS	Electronic	30	30				30		I WE	
	Microscopy									
CE520	Design and Fabrication of	SO	SO				SO		ME	
	MEMS									
CE521	Introduction to	SO	SO				SO		ME	
	Nanotechnolog v									
	ACÉ ENGINEERING									
MA504	Avanced Mathematics	SO	SO				ME			ME
MF506	Materials	SO	SO				ME	 		ME
	Engineering					ļ		ļ		
MF511	Conceptual Aircraft Design	SO	SO				ME			ME
MF512	Finite Element	SO	SO		 		ME	<u> </u>		ME
	for Aeroespace									
MF513	Applications Aerospace	SO	SO	1			SO	1	-	ME
010	Prototype									
ELECTIV	Generation	-		-			<u> </u>	ļ		
							00	ļ		
MF514	Aerospace Structural	SO	SO				SO			ME
	Analysis									
MF515	Materials	SO	SO				SO			ME
MF516	Endurance Mechanics of	SO	SO				SO	 		ME
• .•	Composite									
MF517	Materials Aerodynamics	SO	SO	-			SO	-		ME
	-			-				_		
MF507	Fundamentals of Themofluids	SO	SO				ME			ME
	5ioinidialad		1		ı	<u> </u>	1	1		

MF519	Advanced	SO	SO		SO		ME
	Thermodinamic						
	S						

7. Assessment plan.

Based on the Assessment Plan for CETYS University System:

Currently, the following actions have been done, with regards to the Master's of Science in Engineering Program, with the participation of faculty members from the Graduate College Academy and the College of Engineering:

- 1) Formulation of the Mission and Vision.
- 2) Formulation of the Educational Objectives.
- 3) Formulation of Student Learning Outcomes.
- 4) Curricular Mapping.
- 5) Identification of key courses where evidence of student learning can be gathered.

The assessment components that are currently in the process of being defined, but have not yet been developed and therefore have not been implemented are:

- a) Definition of assessment tools for student learning to be used in the assessment of the Student Learning Outcomes
- b) Systematic gathering of evidence of learning and the analysis and organization of the evidence.